Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog.
نویسندگان
چکیده
The current review focuses on the molecular mechanisms and developmental roles of thyroid hormone receptors (TRs) in gene regulation and metamorphosis in Xenopus laevis and discusses implications for TR function in vertebrate development and diversity. Questions addressed are: (1) what are the molecular mechanisms of gene regulation by TR, (2) what are the developmental roles of TR in mediating the thyroid hormone (TH) signal, (3) what are the roles of the different TR isoforms, and (4) how do changes in these molecular and developmental mechanisms affect evolution? Even though detailed knowledge of molecular mechanisms of TR-mediated gene regulation is available from in vitro studies, relatively little is known about how TR functions in development in vivo. Studies on TR function during frog metamorphosis are leading the way toward bridging the gap between in vitro and in vivo studies. In particular, a dual function model for the role of TR in metamorphosis has been proposed and investigated. In this model, TRs repress genes allowing tadpole growth in the absence of TH during premetamorphosis and activate genes important for metamorphosis when TH is present. Despite the lack of metamorphosis in most other vertebrates, TR has important functions in development across vertebrates. The underlying molecular mechanisms of TR in gene regulation are conserved through evolution, so other mechanisms involving TH-target genes and TH tissue-sensitivity and dependence underlie differences in role of TR across vertebrates. Continued analysis of molecular and developmental roles of TR in X. laevis will provide the basis for understanding how TR functions in gene regulation in vivo across vertebrates and how TR is involved in the generation of evolutionary diversity.
منابع مشابه
More similar than you think: Frog metamorphosis as a model of human perinatal endocrinology.
Hormonal control of development during the human perinatal period is critically important and complex with multiple hormones regulating fetal growth, brain development, and organ maturation in preparation for birth. Genetic and environmental perturbations of such hormonal control may cause irreversible morphological and physiological impairments and may also predispose individuals to diseases o...
متن کاملInvolvement of Glucocorticoids in the Reorganization of the Amphibian Immune System at Metamorphosis
In recent years, integrative animal biologists and behavioral scientists have begun to understand the complex interactions between the immune system and the neuroendocrine system. Amphibian metamorphosis offers a unique opportunity to study dramatic hormone-driven changes in the immune system in a compressed time frame. In the South African clawed frog, Xenopus laevis, the larval pattern of imm...
متن کاملUrocortins of the South African clawed frog, Xenopus laevis: conservation of structure and function in tetrapod evolution.
Several corticotropin-releasing factor (CRF) family genes have been identified in vertebrates. Mammals have four paralogous genes that encode CRF or the urocortins 1, 2, and 3. In teleost fishes, a CRF, urotensin I (a fish ortholog of mammalian urocortin 1) and urocortin 3 have been identified, suggesting that at least three of the four mammalian lineages arose in a common ancestor of modern bo...
متن کاملDescription of a new octoploid frog species (Anura: Pipidae: Xenopus) from the Democratic Republic of the Congo, with a discussion of the biogeography of African clawed frogs in the Albertine Rift.
We describe a new octoploid species of African clawed frog (Xenopus) from the Lendu Plateau in the northern Albertine Rift of eastern Democratic Republic of the Congo. This species is the sister taxon of Xenopus vestitus (another octoploid), but is distinguished by a unique morphology, vocalization and molecular divergence in mitochondrial and autosomal DNA. Using a comprehensive genetic sample...
متن کاملThe colloidal thyroxine (T4) ring as a novel biomarker of perchlorate exposure in the African clawed frog Xenopus laevis.
The purpose of this study was to determine if changes in colloidal thyroxine (T(4)) immunoreactivity can be used as a biomarker of perchlorate exposure in amphibian thyroid tissue. Larval African clawed frogs (Xenopus laevis) were exposed to 0, 1, 8, 93, and 1131 microg perchlorate/l for 38 and 69 days to cover the normal period of larval development and metamorphosis. The results of this study...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- General and comparative endocrinology
دوره 145 1 شماره
صفحات -
تاریخ انتشار 2006